Assessing the Variability of Internal Brain Structures using PCA on Sampled Surface Points

نویسندگان

  • Darwin Martínez
  • Isabelle Bloch
  • José Tiberio Hernández
چکیده

In this paper we propose to analyze the variability of brain structures using principal component analysis (PCA). We rely on a data base of registered and segmented 3D MRI images of normal subjects. We propose to use as input of PCA sampled points on the surface of the considered objects, selected using uniformity criteria or based on mean and Gaussian curvatures. Results are shown on the lateral ventricles. The main variation tendencies are observed in the orthogonal eigenvector space. Dimensionality reduction can be achieved and the variability of each landmark point is accurately described using the first three components.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Morphological and stereotaxic studies of Iranian native goat’s brain

This study was conducted to find out the best outside points of skull to reach different areas of brain thatare essential for neuroendocrinological studies. In this research 30 heads of Iranian native male goats agedbetween 2-3-year-old were collected from Shahrekord abattoir. After collecting whole heads, they were fixedin 10% formalin and then many holes were made on the dorsal surface of sku...

متن کامل

Evaluation of seasonal variability in surface water quality of Shallow Valley Lake, Kashmir, India, using multivariate statistical techniques

Seasonal variation in water quality of Anchar Lake was evaluated using multivariate statistical techniques- principal component analysis (PCA) and cluster analysis (CA). Water quality data collected during 4 seasons was analyzed for 13 parameters. ANOVA showed significant variation in pH (F3 = 10.86, P < 0.05), temperature (F3 = 65, P

متن کامل

Evaluation of seasonal variability in surface water quality of Shallow Valley Lake, Kashmir, India, using multivariate statistical techniques

Seasonal variation in water quality of Anchar Lake was evaluated using multivariate statistical techniques- principal component analysis (PCA) and cluster analysis (CA). Water quality data collected during 4 seasons was analyzed for 13 parameters. ANOVA showed significant variation in pH (F3 = 10.86, P < 0.05), temperature (F3 = 65, P

متن کامل

Consideration of Individual Brain Geometry and Anisotropy on the Effect of tDCS

Introduction: The response variability between subjects, which is one of the fundamental challenges facing transcranial direct current stimulation (tDCS), can be investigated by understanding how the current is distributed through the brain. This understanding can be obtained by means of computational methods utilizing finite element (FE) models. Materials and Methods: In this study, the effect...

متن کامل

Feature selection using genetic algorithm for classification of schizophrenia using fMRI data

In this paper we propose a new method for classification of subjects into schizophrenia and control groups using functional magnetic resonance imaging (fMRI) data. In the preprocessing step, the number of fMRI time points is reduced using principal component analysis (PCA). Then, independent component analysis (ICA) is used for further data analysis. It estimates independent components (ICs) of...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009